

United States Patent [19]

Morsell et al.

Patent Number: [11]

5,089,711

Date of Patent: [45]

Feb. 18, 1992

[5/1]	TACED	DI	ACREA	VDAV	SOURCE
1341	LASER	PI.	ANNA	X-RAY	SOURCE

Inventors: Arthur L. Morsell, Del Mar, Henry

Shields, San Diego, both of Calif.

[73] Assignee: California Jamar, Incorporated, San

Diego, Calif.

[21] Appl. No.: 627,210

[22] Filed: Dec. 13, 1990

Related U.S. Application Data

[63] Continuation of Ser. No. 467,779, Jan. 19, 1990, Pat. No. 5,003,543.

[51]	Int. Cl.5	G03B 41/16	

U.S. Cl. **250/492.3**; 250/493.1

[58] Field of Search 372/5; 250/492.21, 493

[56] References Cited

U.S. PATENT DOCUMENTS

3,513,402	5/1970	Marrison .
3,536,922	10/1970	Ito.
3,586,998	7/1971	Gould .
3,643,116	2/1972	Culver et al
3,955,153	5/1976	Marie .
4,151,487		
4,184,078	1/1980	Nagel et al 250/492.2 A
		Altman .
4,575,645	3/1986	Komine .
4,745,618	5/1988	Burger .
5,003,543	3/1991	Morsell et al 372/2

OTHER PUBLICATIONS

Bijkerek et al., "Laser Plasma as X-ray Source for Lithographic Imaging", presented at the SPIE Symposium on Microlithography, San Jose, Calif., Feb. 26,

Eidmann et al., "Absolutely Measured X-ray Spectra from Laser Plasmas with Targets of Different Elements", Applied Physics Letter, vol. 49, No. 7, Aug. 18, 1989, pp. 377-378.

Ewing et al., "Optical Pulse Compressor Systems for Laser Fusion", *IEEE* Journal of Quantum Electronics, vol. QE-15, No. 5, May, 1979, pp. 368-379.

Frey et al., "High-Efficiency Pulse Compression with Intracavity Raman Oscillators", Optics Letters, vol. 8, No. 8, aug. 1983, pp. 437-439.

Gilbert et al., "X-Ray Yields of Plasmas Heated by

8-nsec Neodymium Laser Pulses", Journal of Applied Physics, vol. 51, No. 3, Mar. 1980, pp. 1449-1451. Hecht, Jeff, "Aurora Laser Puts 100 TW/cm2 On Target", Lasers & Optronics, Nov. 1989, p. 20.
"Iodine Laser Creates Plasma X-Rays", Laser Focus

World, Jun. 1989, pp. 26-28.

Jacobs et al., "Intensification of Rare-Gas Halide Lasers with Application to Laser Fusion", Optical Engineering, vol. 20, No. 5, Sep./Oct., 1981, pp. 777-780. Matsumoto et al., "X-Ray Emission from KrF Laser--Produced Al Plasmas", Applied Physics Letter, vol. 46, No. 1, Jan. 1, 1985, pp. 28-30.

Murray et al., "Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion", IEEE Journal of Quantum Electronics, vol. QE-15, No. 5, May, 1979, pp. 342-368.

Smith, Henry I., "X-Ray Lithography", presented at the SPIE Symposium on Microlithography, San Jose, Calif., Feb. 26, 1989, pp. 5-10.

National Science Foundation Small Business Innovation Research Program Proposal, "Excimer-Laser Pulse-Compression Technique for Laser-Plasma X-Ray Source for X-Ray Lithography", Jun. 15, 1989.

Primary Examiner-Léon Scott, Jr. Attorney, Agent, or Firm-Knobbe, Martens, Olson & Bear

[57] **ABSTRACT**

A laser plasma X-ray source for use in photolithography is disclosed wherein an electro-optical shutter is used to trim the output pulse from a master oscillator to a desired duration. The pulse is then split into several pieces which travel along various optical delay paths so that the pieces pass sequentially through a laser power amplifier. After amplification, the pieces are reassembled and then focussed at the plasma target. In a first embodiment, polarization and angle coding methods are used to distinguish each pulse piece at it travels along the delay paths. In a second embodiment, polarization coding is replaced by additional angle coding transverse to the plane of the angles of the first embodiment. An expander/reducer lens assembly is used in both embodiments to reduce the angles between the beam paths and allow more beams to fit closely to the laser amplifier gain region.

35 Claims, 11 Drawing Sheets

